數列極限的證明是數一、二的重點,特別是數二最近幾年考的非常頻繁,已經考過好幾次大的證明題,一般大題中涉及到數列極限的證明,用到的方法是單調有界準則。" />

91精品视频在线看_久久国产精品久久国产片_青春草在线视频精品_伊人天天躁夜夜躁狠狠

歡迎您訪問2022年考研數學題型有哪些?!

2022年考研數學題型有哪些?

更新時間:2022-01-12 04:03:19作者:admin2

一、數列極限的證明

數列極限的證明是數一、二的重點,特別是數二最近幾年考的非常頻繁,已經考過好幾次大的證明題,一般大題中涉及到數列極限的證明,用到的方法是單調有界準則。

二、微分中值定理的相關證明

微分中值定理的證明題歷來是考研的重難點,其考試特點是綜合性強,涉及到知識面廣,涉及到中值的等式主要是三類定理:

零點定理和介質定理;

微分中值定理;

包括羅爾定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用來處理高階導數的相關問題,考查頻率底,所以以前兩個定理為主。

微分中值定理:積分中值定理的作用是為了去掉積分符號。

在考查的時候,一般會把三類定理兩兩結合起來進行考查,所以要總結到現(xiàn)在為止,所考查的題型。

三、方程根的問題

包括方程根唯一和方程根的個數的討論。

四、不等式的證明

五、定積分等式和不等式的證明

主要涉及的方法有微分學的方法:常數變異法;積分學的方法:換元法和分布積分法。

六、積分與路徑無關的五個等價條件

為您推薦

加載中...