91精品视频在线看_久久国产精品久久国产片_青春草在线视频精品_伊人天天躁夜夜躁狠狠

歡迎您訪問數學考題練習:在△ABC中,∠ACB=90°,AC=BC,直!

數學考題練習:在△ABC中,∠ACB=90°,AC=BC,直

更新時間:2024-01-12 16:45:16作者:貝語網校

在△ABC中,∠ACB=90°,AC=BC,直線MN經過點C,且AD⊥MN于D,BE⊥MN于E.

(1)當直線MN繞點C旋轉到圖1的位置時,求證:DE=AD+BE;

(2)當直線MN繞點C旋轉到圖2、圖3的位置時,試問DE、AD、BE具有怎樣的等量關系?請直接寫出這個等量關系.

試題答案

(1)證明:∵∠DAC+∠ACD=90°,∠ACD+∠ECB=90°,

∴∠DAC=∠ECB,

又∵AC=BC,∠ADC=∠CEB=90°,

∴△ACD≌△CBE,

∴AD=CE,CD=BE,

∴DE=CE+CD=AD+BE;

(2)解:ED=|AD-BE|.

繞點C旋轉到圖2的位置時,ED=AD-BE;

繞點C旋轉到圖3的位置時,ED=BE-AD;

繞點C旋轉垂直于AB時,DE=BE-AD=0,

綜合以上得:ED=|AD-BE|.

試題解析

(1)由已知AC=BC,∠ADC=∠CEB=90°,利用互余關系可證∠DAC=∠ECB,可證△ACD≌△CBE,得AD=CE,CD=BE,故AD+BE=CE+CD=DE;

(2)此時,仍有△ACD≌△CBE,AD=CE,CD=BE,利用線段的和差關系得DE=AD-BE.

點評:本題考查了用旋轉法尋找證明三角形全等的條件,關鍵是利用全等三角形對應線段相等,將有關線段進行轉化.

為您推薦

加載中...